Microsoft

Exploring the structural changes driving protein function with BioEmu-1

Microsoft Research - Thu, 02/20/2025 - 17:13

From forming muscle fibers to protecting us from disease, proteins play an essential role in almost all biological processes in humans and other life forms alike. There has been extraordinary progress in recent years toward better understanding protein structures using deep learning, enabling the accurate prediction of protein structures from their amino acid sequences. However, predicting a single protein structure from its amino acid sequence is like looking at a single frame of a movie—it offers only a snapshot of a highly flexible molecule. Biomolecular Emulator-1 (BioEmu-1) is a deep-learning model that provides scientists with a glimpse into the rich world of different structures each protein can adopt, or structural ensembles, bringing us a step closer to understanding how proteins work. A deeper understanding of proteins enables us to design more effective drugs, as many medications work by influencing protein structures to boost their function or prevent them from causing harm.

One way to model different protein structures is through molecular dynamics (MD) simulations. These tools simulate how proteins move and deform over time and are widely used in academia and industry. However, in order to simulate functionally important changes in structure, MD simulations must be run for a long time. This is a computationally demanding task and significant effort has been put into accelerating simulations, going as far as designing custom computer architectures (opens in new tab). Yet, even with these improvements, many proteins remain beyond what is currently possible to simulate and would require simulation times of years or even decades. 

Enter BioEmu-1 (opens in new tab)—a deep learning model that can generate thousands of protein structures per hour on a single graphics processing unit. Today, we are making BioEmu-1 open-source (opens in new tab), following our preprint (opens in new tab) from last December, to empower protein scientists in studying structural ensembles with our model. It provides orders of magnitude greater computational efficiency compared to classical MD simulations, thereby opening the door to insights that have, until now, been out of reach. BioEmu-1 is featured in Azure AI Foundry Labs (opens in new tab), a hub for developers, startups, and enterprises to explore groundbreaking innovations from research at Microsoft.

About Microsoft Research

Advancing science and technology to benefit humanity

View our story Opens in a new tab

We have enabled this by training BioEmu-1 on three types of data sets: (1) AlphaFold Database (AFDB) (opens in new tab) structures (2) an extensive MD simulation dataset, and (3) an experimental protein folding stability dataset (opens in new tab). Training BioEmu-1 on the AFDB structures is like mapping distinct islands in a vast ocean of possible structures. When preparing this dataset, we clustered similar protein sequences so that BioEmu-1 can recognize that a protein sequence maps to multiple distinct structures. The MD simulation dataset helps BioEmu-1 predict physically plausible structural changes around these islands, mapping out the plethora of possible structures that a single protein can adopt. Finally, through fine-tuning on the protein folding stability dataset, BioEmu-1 learns to sample folded and unfolded structures with the right probabilities.

Figure 1: BioEmu-1 predicts diverse structures of LapD protein unseen during training. We sampled structures independently and reordered the samples to create a movie connecting two experimentally known structures.

Combining these advances, BioEmu-1 successfully generalizes to unseen protein sequences and predicts multiple structures. In Figure 1, we show that BioEmu-1can predict structures of the LapD protein (opens in new tab) from Vibrio cholerae bacteria, which causes cholera. BioEmu-1 predicts structures of LapD when it is bound and unbound with c-di-GMP molecules, both of which are experimentally known but not in the training set. Furthermore, our model offers a view on intermediate structures, which have never been experimentally observed, providing viable hypotheses about how this protein functions. Insights into how proteins function pave the way for further advancements in areas like drug development.

Figure 2: BioEmu-1 reproduces the D. E. Shaw research (DESRES) simulation of Protein G accurately with a fraction of the computational cost. On the top, we compare the distributions of structures obtained by extensive MD simulation (left) and independent sampling from BioEmu-1 (right). Three representative sample structures are shown at the bottom.

Moreover, BioEmu-1 reproduces MD equilibrium distributions accurately with a tiny fraction of the computational cost. In Figure 2, we compare 2D projections of the structural distribution of D. E. Shaw research (DESRES) simulation of Protein G (opens in new tab) and samples from BioEmu-1. BioEmu-1 reproduces the MD distribution accurately, while requiring 10,000-100,000 times fewer GPU hours.

Figure 3: BioEmu-1 accurately predicts protein stability. On the left, we plot the experimentally measured free energy differences ΔG against those predicted by BioEmu-1. On the right, we show a protein in folded and unfolded structures.

Furthermore, BioEmu-1 accurately predicts protein stability, which we measure by computing the folding free energies—a way to quantify the ratio between the folded and unfolded states of a protein. Protein stability is an important factor when designing proteins, e.g., for therapeutic purposes. Figure 3 shows the folding free energies predicted by BioEmu-1, obtained by sampling protein structures and counting folded versus unfolded protein structures, compared against experimental folding free energy measurements. We see that even on sequences that BioEmu-1 has never seen during training, the predicted free energy values correlate well with experimental values.

Professor Martin Steinegger (opens in new tab) of Seoul National University, who was not part of the study, says “With highly accurate structure prediction, protein dynamics is the next frontier in discovery. BioEmu marks a significant step in this direction by enabling blazing-fast sampling of the free-energy landscape of proteins through generative deep learning.”

We believe that BioEmu-1 is a first step toward generating the full ensemble of structures that a protein can take. In these early days, we are also aware of its limitations. With this open-source release, we hope scientists will start experimenting with BioEmu-1, helping us carve out its potentials and shortcomings so we can improve it in the future. We are looking forward to hearing how it performs on various proteins you care about.

Acknowledgements

BioEmu-1 is the result of highly collaborative team effort at Microsoft Research AI for Science. The full authors: Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew Y. K. Foong, Victor García Satorras, Osama Abdin, Bastiaan S. Veeling, Iryna Zaporozhets, Yaoyi Chen, Soojung Yang, Arne Schneuing, Jigyasa Nigam, Federico Barbero, Vincent Stimper, Andrew Campbell, Jason Yim, Marten Lienen, Yu Shi, Shuxin Zheng, Hannes Schulz, Usman Munir, Ryota Tomioka, Cecilia Clementi, Frank Noé

Opens in a new tab

The post Exploring the structural changes driving protein function with BioEmu-1 appeared first on Microsoft Research.

Categories: Microsoft

Introducing Muse: Our first generative AI model designed for gameplay ideation

Microsoft Research - Wed, 02/19/2025 - 18:05

Today, the journal Nature (opens in new tab) is publishing our latest research, which introduces the first World and Human Action Model (WHAM). The WHAM, which we’ve named “Muse,” is a generative AI model of a video game that can generate game visuals, controller actions, or both.

The paper in Nature offers a detailed look at Muse, which was developed by the Microsoft Research Game Intelligence (opens in new tab) and Teachable AI Experiences (opens in new tab) (Tai X) teams in collaboration with Xbox Games Studios’ Ninja Theory (opens in new tab). Simultaneously, to help other researchers explore these models and build on our work, we are open sourcing the weights and sample data and making the executable available for the WHAM Demonstrator—a concept prototype that provides a visual interface for interacting with WHAM models and multiple ways of prompting the models. Developers can learn and experiment with the weights, sample data, and WHAM Demonstrator on Azure AI Foundry (opens in new tab)

In our research, we focus on exploring the capabilities that models like Muse need to effectively support human creatives. I’m incredibly proud of our teams and the milestone we have achieved, not only by showing the rich structure of the game world that a model like Muse can learn, as you see in the video demo below, but also, and even more importantly, by demonstrating how to develop research insights to support creative uses of generative AI models.

Generated gameplay examples Example gameplay sequences generated by Muse (based on WHAM-1.6B) demonstrate that our model can generate complex gameplay sequences that are consistent over several minutes. All examples shown here were generated by prompting the model with 10 initial frames (1 second) of human gameplay and the controller actions of the whole play sequence. Muse is used in “world model mode” meaning that it is used to predict how the game will evolve from the initial prompt sequence. The more closely the generated gameplay sequence resembles the actual game, the more accurately Muse has captured the dynamics of that game. What motivated this research?

As we release our research insights and model today, I keep thinking back to how this all started.  There was a key moment back in December 2022 that I remember clearly. I had recently returned from maternity leave, and while I was away the machine learning world had changed in fundamental ways. ChatGPT had been publicly released, and those who had tried it were in awe of OpenAI’s technical achievements and the model’s capabilities. It was a powerful demonstration of what transformer-based generative models could do when trained on large amounts of (text) data. Coming back from leave at that moment, the key question on my mind was, “What are the implications of this achievement for our team’s work at the intersection of artificial intelligence and video games?”

A new research opportunity enabled by data

In our team, we had access to a very different source of data. For years, we had collaborated with Xbox Game Studios’ Ninja Theory (based in Cambridge, UK, just like our research team) to collect gameplay data from Bleeding Edge, their 2020 Xbox game. Bleeding Edge is a 4-versus-4 game where all games are played online, and matches are recorded if the player agrees to the End User License Agreement (EULA). We worked closely with our colleagues at Ninja Theory and with Microsoft compliance teams to ensure that the data was collected ethically and used responsibly for research purposes.

“It’s been amazing to see the variety of ways Microsoft Research has used the Bleeding Edge environment and data to explore novel techniques in a rapidly moving AI industry,” said Gavin Costello, technical director at Ninja Theory. “From the hackathon that started it all, where we first integrated AI into Bleeding Edge, to building AI agents that could behave more like human players, to the World and Human Action Model being able to dream up entirely new sequences of Bleeding Edge gameplay under human guidance, it’s been eye-opening to see the potential this type of technology has.” 

Muse Training Data Current Muse instances were trained on human gameplay data (visuals and controller actions) from the Xbox game Bleeding Edge – shown here at the 300×180 px resolution at which we train current models. Muse (using WHAM-1.6B) has been trained on more than 1 billion images and controller actions, corresponding to over 7 years of continuous human gameplay. The Game Intelligence and Teachable AI Experiences teams playing the Bleeding Edge game together.

Until that point in late 2022, we had used Bleeding Edge as a platform for human-like navigation experiments, but we had not yet made meaningful use of the large amount of human player data we now had available. With the powerful demonstration of text-models, the next question was clear: “What could we achieve if we trained a transformer-based model on large amounts of human gameplay data?” 

Scaling up model training

As the team got to work, some of the key challenges included scaling up the model training. We initially used a V100 cluster, where we were able to prove out how to scale up to training on up to 100 GPUs; that eventually paved the way to training at scale on H100s. Key design decisions we made early focused on how to best leverage insights from the large language model (LLM) community and included choices such as how to effectively represent controller actions and especially images.

The first sign that the hard work of scaling up training was paying off came in the form of a demo that thoroughly impressed me. Tim Pearce, at that time a researcher in Game Intelligence, had put together examples of what happened early versus later in training. You can see the demo here – it’s like watching the model learn. This led to our follow-up work showing how scaling laws emerge in these kinds of models.

Muse consistency over the course of training Ground truth
Human gameplayGame visuals generated by Muse with 206M parameters
Conditioned on 1 second of real gameplay and 9 seconds of actionsOriginal10k training updates100k training updates1M training updatesCharacter recognizableBasic movements and geometry​No degeneration over time​✘Correct interaction with power cell​✘✘Models flying mechanic correctly​✘✘Comparing ground truth human gameplay (left) to visuals generated using Muse (using WHAM-206M) when prompted with 1 second of human gameplay (visuals and controller actions) and 9 seconds of controller actions from the ground truth. In this setting, if Muse can generate visuals that closely match the ground truth, then it has captured the game dynamics. We see that the quality of generated visuals improves visibly over the course of training. In early training (10k training updates) we see signs of life, but quality deteriorates quickly. After 100k training updates, the model is consistent over time but does not yet capture relatively less frequent aspects of the game dynamics, such as the flying mechanic. Consistency with the ground truth continues to improve with additional training, e.g., the flying mechanic is captured after 1M training updates. Multidisciplinary collaboration: Involving users from the beginning

We had started to investigate how to evaluate these types of models early on. For example, we wanted to understand the representations learned using linear probing, which was driven by Research Intern Gunshi Gupta and Senior Research Scientist Sergio Valcarcel Macua; to explore online evaluation, driven by Senior Research Scientist Raluca Georgescu; and to generate both visuals and actions, initially termed “full dreaming” and driven by Research Intern Tarun Gupta. But working through how to systematically evaluate Muse required a much broader set of insights. More importantly, we needed to understand how people might use these models in order to know how to evaluate them.  

This was where the opportunity for multidisciplinary research became crucial. We had discussed aspects of this work with Senior Principal Research Manager Cecily Morrison and her Teachable AI Experiences team for several months. And we had already partnered on an engagement with game creatives (driven by Cecily, Design Researcher Linda Wen, and Principal Research Software Development Engineer Martin Grayson) to investigate how game creators would like to use generative AI capabilities in their creative practice.

“It was a great opportunity to join forces at this early stage to shape model capabilities to suit the needs of creatives right from the start, rather than try to retrofit an already developed technology,” Cecily said. 

Linda offered some valuable insights about how we approached the work: “We’ve seen how technology-driven AI innovation has disrupted the creative industry—often catching creators off guard and leaving many feeling excluded,” she said. “This is why we invited game creators to help us shape this technology from the start. Recognizing that most AI innovations are developed in the Global North, we also made it a priority to recruit game creators from underrepresented backgrounds and geographies. Our goal was to create a technology that benefits everyone—not just those already in positions of privilege.” 

Unlocking new creative use cases with the WHAM Demonstrator

Now, with the model’s emerging capabilities and user insights in mind, it was time to put all the pieces together. The teams joined forces during a Microsoft internal hackathon to explore new interaction paradigms and creative uses that Muse could unlock. As a result, we developed a prototype that we call the WHAM Demonstrator, which allows users to directly interface with the model.

“The Global Hackathon was the perfect opportunity for everyone to come together and build our first working prototype,” Martin said. “We wanted to develop an interface for the WHAM model that would allow us to explore its creative potential and start to test ideas and uses we had learned from our interviews with game developers.” 

WHAM Demonstrator

For interacting with World and Human Action Models like Muse, the WHAM Demonstrator provides a visual interface for interacting with a WHAM instance.

In this example, the user is loading a visual as an initial prompt to the model, here a single promotional image for the game Bleeding Edge. They use Muse to generate multiple potential continuations from this starting point. The user explores the generated sequences and can tweak them, for example using a game controller to direct the character. These features demonstrate how Muse’s capabilities can enable iteration as part of the creative process. Identifying key capabilities and how to evaluate them

The hands-on experience of exploring Muse capabilities with the WHAM Demonstrator, and drawing on insights we gained from the user study, allowed us to systematically identify capabilities that game creatives would require to use generative models like Muse. This in turn allowed us to establish evaluation protocols for three key capabilities: consistency, diversity, and persistency. Consistency refers to a model’s ability to generate gameplay sequences that respect the dynamics of the game. For example, the character moves consistently with controller actions, does not walk through walls, and generally reflects the physics of the underlying game. Diversity refers to a model’s ability to generate a range of gameplay variants given the same initial prompt, covering a wide range of ways in which gameplay could evolve. Finally, persistency refers to a model’s ability to incorporate (or “persist”) user modifications into generated gameplay sequences, such as a character that is copy-pasted into a game visual. We give an overview of these capabilities below. 

Muse evaluation of consistency, diversity and persistency Consistency We evaluate consistency by prompting the model with ground truth gameplay sequences and controller actions, and letting the model generate game visuals. The videos shown here are generated using Muse (based on WHAM-1.6B) and demonstrate the model’s ability to generate consistent gameplay sequences of up to two minutes. In our paper, we also compare the generated visuals to the ground truth visuals using FVD (Fréchet Video Distance), an established metric in the video generation community. Diversity Muse (based on WHAM-1.6B) generated examples of behavioral and visual diversity, conditioned on the same initial 10 frames (1 second) of real gameplay. The three examples at the top show behavioral diversity (diverse camera movement, loitering near the spawn location, and navigating various paths to the middle jump pad). The three examples below show visual diversity (different hoverboards for the character). In the paper, we also quantitatively assess diversity using the Wasserstein distance, a measure of distance between two distributions, to compare the model-generated sequences to the diversity reflected in human gameplay recordings. Muse generated examples of behavioral and visual diversity, conditioned on the same 10 frames of real gameplay. Three examples of behavioral diversity show diverse camera movement, loitering near the spawn location, and navigating various paths to the middle jump pad. Three examples of visual diversity show different hoverboards for the character.

With our evaluation framework in place, and access to an H100 compute allocation, the team was able to further improve Muse instances, including higher resolution image encoders (our current models generate visuals at a resolution of 300×180 pixels, up from the 128×128 resolution of our earliest models) and larger models, and expand to all seven Bleeding Edge maps. To show some of the capabilities of the model we are publishing today, we have included videos of 2-minute-long generated gameplay sequences above, which give an impression of the consistency and diversity of gameplay sequences that the model can generate.

According to Senior Researcher Tabish Rashid: “Being handed an allocation of H100s was initially quite daunting, especially in the early stages figuring out how to make best use of it to scale to larger models with the new image encoders. After months of experimentation, it was immensely rewarding to finally see outputs from the model on a different map (not to knock the lovely greenery of Skygarden) and not have to squint so much at smaller images. I’m sure at this point many of us have watched so many videos from Muse that we’ve forgotten what the real game looks like.”

One of my favorite capabilities of the model is how it can be prompted with modifications of gameplay sequences and persist newly introduced elements. For example, in the demo below, we’ve added a character onto the original visual from the game. Prompting the model with the modified visual, we can see how the model “persists” the added character and generates plausible variants of how the gameplay sequence could have evolved from this modified starting point.

Persistency Demonstrations of how Muse (based on WHAM-1.6B) can persist modifications. A visual is taken from the original gameplay data and an image of an additional character is edited into the image. The generated gameplay sequence shows how the character is adapted into the generated gameplay sequence. Conclusion

Today, our team is excited to be publishing our work in Nature and simultaneously releasing Muse open weights, the WHAM Demonstrator, and sample data to the community.

I look forward to seeing the many ways in which the community will explore these models and build on our research. I cannot wait to see all the ways that these models and subsequent research will help shape and increase our understanding of how generative AI models of human gameplay may support gameplay ideation and pave the way for future, novel, AI-based game experiences, including the use cases that our colleagues at Xbox (opens in new tab) have already started to explore.

Opens in a new tab

The post Introducing Muse: Our first generative AI model designed for gameplay ideation appeared first on Microsoft Research.

Categories: Microsoft

Microsoft Research and Physics Wallah team up to enhance AI-based tutoring

Microsoft Research - Wed, 02/12/2025 - 23:01

In India, limited resources, geographical constraints, and economic factors present barriers to quality education for some students.

A shortage of teachers, particularly in remote or low-income areas, makes it harder for students to receive the guidance they need to prepare for highly competitive professional and academic programs. Microsoft Research is developing new algorithms and techniques that are enabling Physics Wallah (opens in new tab), a growing educational company, to make its AI-based tutoring services more accurate and reliable, to better support students on their education journey.

As in other countries, many Indian students purchase coaching and tutoring services to prepare for entrance exams at top institutions. This includes offline coaching, where hundreds of students meet in a classroom staffed by teachers covering a structured curriculum. Online coaching enables students to learn remotely in a virtual classroom. Hybrid coaching delivers virtual lessons in a physical classroom.

Offline courses can cost as much as 100,000 Indian rupees a year—equivalent to hundreds of U.S. dollars. This puts them out of reach for many lower income students living in smaller and mid-sized Indian cities, as well as rural villages. Online courses are much more affordable. They allow students to work at their own pace by providing high-quality web-based content supported by teachers who work remotely.

Vineet Govil

Meeting this need is the mission of Physics Wallah. The company uses AI to offer on-demand tutoring at scale, curating volumes of standard science- and math-related content to provide the best answers. Some 2 million students use the Physics Wallah platform every day, at a fraction of the cost of offline tutoring. For example, its prep courses for the Joint Entrance Examination (JEE), which is required for admission to engineering and technology programs, and the National Eligibility cum Entrance Test (NEET), a required entrance exam for medical and dental school candidates, cost between 4,200 and 4,500 rupees per year. That’s roughly 50 U.S. dollars.

“The mantra here really is how do we provide quality education in an affordable manner and accessible to every student, regardless of who they are or where they come from.”

—Vineet Govil, Chief Technology and Product Officer, Physics Wallah

Microsoft Research India’s collaboration with Physics Wallah is part of a 20-year legacy of supporting emerging Indian companies, underscored by the January 2025 announcement that Microsoft will invest $3 billion (opens in new tab) in cloud and AI infrastructure to accelerate the adoption of AI, skilling, and innovation.  

Physics Wallah has developed an AI-driven educational suite, Alakh AI, leveraging OpenAI’s GPT-4o model through Microsoft Azure OpenAI Service. Alakh AI’s flagship offerings include AI Guru and the Smart Doubt Engine, both designed to transform the learning experience in and beyond the classroom.

  • AI Guru acts as a personal academic tutor, delivering adaptive guidance based on a student’s progress, real-time question-solving, and customized content that evolves with their learning journey.
  • Smart Doubt Engine is an AI tool through which students can ask questions (also known as “doubts” in Indian English) during live classes and receive instant responses.

Additionally, the Alakh AI suite includes:

  • AI Grader for subjective answer evaluation without human intervention
  • Sahayak for crafting hyper-personalized learning paths tailored to individual students’ needs

This innovative ecosystem elevates learning efficiency and accessibility for students.

AI Guru in action – A student asks, “Explain Newton’s First Law,” and the AI tutor provides a detailed explanation along with two videos for further learning. Smart Doubt Engine in action – A student asks a clarifying question during a live class, and the AI provides a detailed explanation in real time. How does AI Guru work?

Let’s say a student had a question about Newton’s laws of motion, a core concept in physics. She would type her query into the AI Guru chat window (she could also just talk to it or upload an image from a textbook) and receive a text answer plus images derived from standard textbooks and curated content, typically in just a few seconds. AI Guru also provides a short video where a teacher offers additional context.

Getting the technology right

The Alakh AI suite is powered by OpenAI’s foundational models GPT-4 and GPT-4o, integrated with a retrieval-augmented generation (RAG) architecture. It leverages Physics Wallah’s rich repository of high-quality curated content—developed and refined over several years—along with continuous updates from subject matter experts to ensure new materials, textbooks, tutorials, and question banks are seamlessly incorporated. Despite considerable progress, the existing AI sometimes falters when navigating complex academic problems.

“The accuracy level of today’s large language models (LLMs) is not up to the mark where we can provide reliable and satisfactory answers to the students all the time—specifically, if it’s a hard mathematical problem involving complex equations,” Govil said.

That’s one important focus of the collaboration. Researchers from Microsoft Research are developing new algorithms and techniques to enhance the accuracy and reasoning capabilities of AI models. They are now collaborating with Physics Wallah to apply these advancements to the Alakh AI suite, improving its ability to solve complex problems and provide more reliable, step-by-step guidance to students. A key challenge is the nature of student queries, which are often ambiguous and involve multimodal inputs—text, images, videos, or audio—requiring unified capabilities to address the problem. Many STEM problems require breaking down complex queries into logical sub-problems and applying high-order, step-by-step reasoning for consistency. Additionally, integrating domain-specific knowledge in advanced math, physics, chemistry, and biology requires contextualization and seamless retrieval of specialized, grade-appropriate information. 

Microsoft Research is working with Physics Wallah to move beyond traditional next-token prediction and develop AI systems that approach reliable, systematic, step-by-step problem-solving.

That includes ongoing work to enhance the model’s reasoning capabilities and deliver more accurate query answers on complex JEE math problems. Instead of just providing the final answer, the underlying models now break problems into step-by-step solutions. That helps students learn how to solve the actual problems. The AI can also review student answers, detect mistakes, and give detailed feedback, acting as a personal tutor to guide students, improve their understanding, and enhance their learning experience.

Microsoft research blog

PromptWizard: The future of prompt optimization through feedback-driven self-evolving prompts

PromptWizard from Microsoft Research is now open source. It is designed to automate and simplify AI prompt optimization, combining iterative LLM feedback with efficient exploration and refinement techniques to create highly effective prompts in minutes.

Read more Opens in a new tab

Solving complex problems requires enhancing the reasoning capabilities of both large and small language models by training them to not just generate answers, but to systematically think through and reason about complex problems. This requires high-quality reasoning traces—detailed, step-by-step breakdowns of logical problem-solving processes.

To enable this, researchers collaborated with Physics Wallah to curate a dataset of 150,000 high-quality math reasoning traces. These traces serve as the foundation for training specialized small language models (SLMs) using supervised fine-tuning (SFT). Model performance is further refined through training on carefully curated on-policy preference data, ensuring alignment with high-quality reasoning standards. The team’s current Phi-based models have already outperformed leading LLMs and other baselines on complex math problems.

“Building AI systems capable of human-like thinking and reasoning represents a significant challenge.”

—Akshay Nambi, Principal Researcher at Microsoft Research India

The next step is to develop a self-evolving learning pipeline using online reinforcement learning techniques, allowing the model to continuously generate high-quality synthetic data that further enhances its capabilities. Additionally, researchers are building a reward model and integrating it with Monte Carlo Tree Search (MCTS) to optimize reasoning and improve inference-time decision-making.

“The goal is to develop tools that complement education. To do this, we are enhancing the model’s capabilities to process, break down, and solve problems step-by-step. We do this by incorporating high-quality data into training to teach the model how to approach such tasks, alongside algorithmic innovations that enable the model to think and reason more effectively.”

Listen or read along as Microsoft Research Podcast guest Akshay Nambi shares how his passion for tackling real-world challenges across various domains fuels his work in building reliable and robust AI systems. Opening new doors for students Chandramouleswar Parida

Getting an education at a top university can be life changing for anyone. For Chandramouleswar Parida, it could change the lives of everyone in his home village in Baniatangi, Khordha, Odisha State, India. Chandra decided to become a doctor after watching his grandfather die from a heart attack. The nearest doctor who could have treated him was at a regional hospital 65 kilometers away.

“He could have been saved if certain procedures had been followed,” Chandra said. He wants to study medicine, perhaps receiving advanced training overseas, and then return home. “I want to be a doctor here in our village and serve our people, because there is a lack of treatment. Being a doctor is a very noble kind of job in this society.”

Chandra is the only student in Baniatangi Village, Khordha, Odisha, currently preparing for the NEET. Without Physics Wallah, students like Chandra would likely have no access to the support and resources that can’t be found locally.

Anushka Sunil Dhanwade

Another student, Anushka Sunil Dhanwade, is optimistic that Physics Wallah will help her dramatically improve her initial score on the NEET exam. While in 11th class, or grade, she joined an online NEET prep class with 800 students. But she struggled to follow the coursework, as the teachers tailored the content to the strongest students. After posting a low score on the NEET exam, her hopes of becoming a doctor were fading.

But after a serious stomach illness reminded her of the value of having a doctor in her family, she tried again, this time with Physics Wallah and AI Guru. After finishing 12th class, she began preparing for NEET and plans to take the exams again in May, confident that she will increase her score.

“AI Guru has made my learning so smooth and easy because it provides me answers related to my study and study-related doubt just within a click.”

—Anushka Sunil Dhanwade, Student Next steps in the collaboration

The collaboration between Microsoft Research and Physics Wallah aims to apply the advancements in solving math problems across additional subjects, ultimately creating a unified education LLM with enhanced reasoning capabilities and improved accuracy to support student learning.

“We’re working on an education-specific LLM that will be fine-tuned using the extensive data we’ve gathered and enriched by Microsoft’s expertise in LLM training and algorithms. Our goal is to create a unified model that significantly improves accuracy and raises student satisfaction rates to 95% and beyond,” Govil explained.

The teams are also integrating a new tool from Microsoft Research called PromptWizard (opens in new tab), an automated framework for optimizing the instructions given to a model, into Physics Wallah’s offerings. New prompts can now be generated in minutes, eliminating months of manual work, while providing more accurate and aligned answers for students.

For Nambi and the Microsoft Research India team, the collaboration is the latest example of their deep commitment to cultivating the AI ecosystem in India and translating new technology from the lab into useful business applications.

“By leveraging advanced reasoning techniques and domain expertise, we are transforming how AI addresses challenges across multiple subjects. This represents a key step in building AI systems that act as holistic personal tutors, enhancing student understanding and creating a more engaging learning experience,” Nambi said.

Explore more Opens in a new tab

The post Microsoft Research and Physics Wallah team up to enhance AI-based tutoring appeared first on Microsoft Research.

Categories: Microsoft

Advances to low-bit quantization enable LLMs on edge devices

Microsoft Research - Wed, 02/05/2025 - 19:32

Large language models (LLMs) are increasingly being deployed on edge devices—hardware that processes data locally near the data source, such as smartphones, laptops, and robots. Running LLMs on these devices supports advanced AI and real-time services, but their massive size, with hundreds of millions of parameters, requires significant memory and computational power, limiting widespread adoption. Low-bit quantization, a technique that compresses models and reduces memory demands, offers a solution by enabling more efficient operation.

Recent advances in low-bit quantization have made mixed-precision matrix multiplication (mpGEMM) viable for LLMs. This deep learning technique allows data of the same or different formats to be multiplied, such as int8*int1, int8*int2, or FP16*int4. By combining a variety of precision levels, mpGEMM strikes a balance among speed, memory efficiency, and computational accuracy. 

However, most hardware supports only symmetric computations—operations on data of similar formats—creating challenges for mixed-precision calculations during General Matrix Multiplication (GEMM), a critical operation for LLMs. Overcoming these hardware limitations is essential to fully benefit from mpGEMM and support asymmetrical computations. 

To unlock the potential of low-bit quantization on resource-constrained edge devices, hardware must natively support mpGEMM. To address this, we developed the following three approaches for computing kernels and hardware architectures: 

  • Ladder data type compiler: Supports various low-precision data types by converting unsupported types into hardware-compatible ones without data loss, while also generating high-performance conversion code. 
  • T-MAC mpGEMM library: Implements GEMM using a lookup table (LUT) approach, eliminating multiplications to significantly reduce computational overhead. Optimized for diverse CPUs, T-MAC delivers several times the speed of other libraries. 
  • LUT Tensor Core hardware architecture: Introduces a cutting-edge design for next-generation AI hardware, tailored for low-bit quantization and mixed-precision computations.

The following sections describe these techniques in detail.

Ladder: Bridging the gap between custom data and hardware limits

Cutting-edge hardware accelerators, such as GPUs, TPUs, and specialized chips, are designed to speed up computationally intensive tasks like deep learning by efficiently handling large-scale operations. These accelerators now integrate lower-bit computing units, such as FP32, FP16, and even FP8, into their architectures.  

However, constraints in chip area and hardware costs limit the availability of these units for standard data types. For instance, the NVIDIA V100 Tensor Core GPU supports only FP16, while the A100 supports int2, int4, and int8 but not newer formats like FP8 or OCP-MXFP. Additionally, the rapid development of LLMs often outpaces hardware upgrades, leaving many new data formats unsupported and complicating deployment.

Additionally, while hardware accelerators may lack direct support for custom data types, their memory systems can convert these types into fixed-width data blocks that store any data format. For instance, NF4 tensors can be converted into FP16 or FP32 for floating-point operations.

Building on these insights, we developed the Ladder data type compiler, a method to separate data storage from computation, enabling broader support for custom data types. It bridges the gap between emerging custom data formats with the precision types supported by current hardware.

Ladder offers a flexible system for converting between algorithm-specific and hardware-supported data types without data loss. For low-bit applications, it optimizes performance by translating low-bit data into the most efficient formats for the hardware being used. As shown in Figure 1, this includes mapping low-bit computations to supported instructions and efficiently managing data storage across the memory hierarchy. 

Figure 1: The Ladder architecture Evaluating Ladder

Evaluations of Ladder on NVIDIA and AMD GPUs show that it outperforms existing deep neural network (DNN) compilers for natively supported data types. It also handles custom data types not supported by GPUs, achieving speedups of up to 14.6 times. 

As the first system to support custom low-precision data types for running DNNs on modern hardware accelerators, Ladder provides researchers with flexibility in optimizing data types. It also enables hardware developers to support a wider range of data types without requiring hardware modifications. 

T-MAC: Table-lookup for mpGEMM without multiplication

Deploying low-bit quantized LLMs on edge devices often requires dequantizing models to ensure hardware compatibility. However, this approach has two major drawbacks: 

  1. Performance: Dequantization overhead can result in poor performance, negating the benefits of low-bit quantization.
  2. Development: Developers must redesign data layouts and kernels for different mixed precisions.

To address these challenges, we introduce T-MAC, a novel LUT-based method that enables mpGEMM without dequantization or multiplication. 

T-MAC replaces traditional multiplication operations with bit-wise table lookups, offering a unified and scalable solution for mpGEMM. It incorporates techniques to reduce the size of tables and store them directly on the chip, minimizing the overhead of accessing data from memory. By eliminating dequantization and lowering computational costs, T-MAC enables efficient inference of low-bit LLMs on resource-constrained edge devices. Figure 2 illustrates T-MAC’s architecture. 

Figure 2. Overview of the T-MAC system Evaluating T-MAC

Performance evaluations of T-MAC on low-bit models demonstrated substantial benefits in efficiency and speed. On the Surface Laptop 7 with the Qualcomm Snapdragon X Elite chipset, T-MAC achieved: 

  • 48 tokens per second for the 3B BitNet-b1.58 model 
  • 30 tokens per second for the 2-bit 7B Llama model 
  • 20 tokens per second for the 4-bit 7B Llama model

These speeds far exceed average human reading rates, outperforming llama.cpp by 4–5 times and doubling the speed of a dedicated NPU accelerator. Even on lower-end devices like the Raspberry Pi 5, T-MAC made it possible for the 3B BitNet-b1.58 model to generate 11 tokens per second. It also proved highly power-efficient, matching llama.cpp’s generation rate while using only 1/4 to 1/6 of the CPU cores.

These results establish T-MAC as a practical solution for deploying LLMs on edge devices with standard CPUs, without relying on GPUs or NPUs. T-MAC allows LLMs to run efficiently on resource-constrained devices, expanding their applicability across a wider range of scenarios.

LUT Tensor Core: Driving hardware for mpGEMM

While T-MAC and Ladder optimize mpGEMM on existing CPU and GPU architectures, improving computational efficiency, they cannot match the performance of dedicated hardware accelerators with built-in LUT support. Achieving significant improvements in performance, power, and area (PPA) requires overcoming four key challenges:

  1. Table precompute and storage: Precomputing and storing LUTs add overhead, increasing area usage, latency, and storage requirements, which can reduce overall efficiency gains.
  2. Bit-width flexibility: Hardware must support various precision levels, such as int4/2/1 for weights and FP16/8 or int8 for activations, along with their combinations. This flexibility is crucial for accommodating diverse model architectures and use cases.
  3. LUT tiling shape: Inefficient tiling shapes can raise storage costs and limit reuse opportunities, adversely affecting performance and efficiency.
  4. Instruction and compilation: LUT-based mpGEMM requires a new instruction set. Existing compilation stacks, designed for standard GEMM hardware, may not optimally map and schedule these instructions, complicating integration with LLM inference software.

In response, we developed LUT Tensor Core, a software-hardware codesign for low-bit LLM inference. To address precomputation overhead in conventional LUT-based methods, we introduce techniques like software-based DFG transformation, operator fusion, and table symmetrization to optimize table precomputation and storage. Additionally, we propose a hardware design with an elongated tiling shape to support table reuse and a bit-serial design to handle various precision combinations in mpGEMM.

To integrate with existing GPU microarchitectures and software stacks, we extended the MMA instruction set, added new LMMA instructions, and developed a cuBLAS-like software stack for easy integration into existing DNN frameworks. We also created a compiler for end-to-end execution planning on GPUs with LUT Tensor Core. This design and workflow, illustrated in Figure 3, enabled the quick and seamless adoption of LUT Tensor Core.

Figure 3. The LUT Tensor Core workflow Evaluating LUT Tensor Core

Testing LUT Tensor Core on low-bit LLMs, such as BitNet and Llama, showed significant performance gains, achieving 6.93 times the inference speed while using just 38.3% of the area of a traditional Tensor Core. With nearly identical model accuracy, this results in a 20.9-fold increase in computational density and an 11.2-fold boost in energy efficiency. As AI models grow in scale and complexity, LUT Tensor Core enables low-bit LLMs to be applied in new and diverse scenarios.

We believe the LUT technique could drive a paradigm shift in AI model inference. Traditional methods rely on multiplication and accumulation operations, whereas LUT implementations provide higher transistor density, greater throughput per chip area, lower energy costs, and better scalability. As large models adopt low-bit quantization, the LUT method could become the standard for system and hardware design, advancing the next generation of AI hardware innovation.

Unlocking new possibilities for embodied AI

Low-bit quantization improves the efficiency of running large models on edge devices while also enabling model scaling by reducing the bits used to represent each parameter. This scaling enhances model capabilities, generality, and expressiveness, as shown by the BitNet model, which starts with a low-bit configuration and expands.

Technologies like T-MAC, Ladder, and LUT Tensor Core provide solutions for running low-bit quantized LLMs, supporting efficient operation across edge devices and encouraging researchers to design and optimize LLMs using low-bit quantization. By reducing memory and computational demands, low-bit LLMs could power embodied AI systems, such as robots, enabling dynamic perception and real-time environmental interaction.

T-MAC (opens in new tab) and Ladder (opens in new tab) are open source and available on GitHub. We invite you to test and explore these innovations in AI technology with Microsoft Research.

Spotlight: Event Series

Microsoft Research Forum

Join us for a continuous exchange of ideas about research in the era of general AI. Watch the first four episodes on demand.

Watch on-demand Opens in a new tab Opens in a new tab

The post Advances to low-bit quantization enable LLMs on edge devices appeared first on Microsoft Research.

Categories: Microsoft

Inilah Keunggulan Yang Ditawarkan Situs Sabung Ayam Online Resmi Di Indonesia

Microsoft Kitchen - Wed, 09/20/2023 - 16:59

Situs judi IDN Slot online yang resmi dan terbaik adalah tempat untuk player yang ingin melakukan taruhan dengan cara online. di dalamnya kamu akan menemukan permainan sabung ayam yang sudah terkenal di Indonesia. game sabung ayam sendiri adalah permainan yang sangat disukai oleh para pecinta ayam aduan tidak hanya di Indonesia saja tapi juga di berbagai belahan dunia. Dikarenakan adanya larangan perjudian, sekarang seluruh pecinta ayam aduan melakuka taruhan dengan sistem online. karena itu kamu bisa mencoba game ini di agen judi resmi dan terpercaya untuk dapatkan keseruan tanpa batas di dalamnya.

Beragam Keunggulan Yang Ditawarkan Situs Sabung Ayam Online Resmi Indonesia

Kebanyakan petaruh di Indonesia yang melakukan taruhan sabung ayam diwajibkan untuk memilih agen atau situs judi sabung ayam terbaik terlebih dahulu. Karena ketika pemilihan agen dapat dilakukan oleh player, tentu saja hal ini akan memudahkan jalannya dalam mendapatkan keuntungan dengan mudah. agen judi sabung ayam terbaik sendiri menawarkan beberapa keungguln yang membuat petaruh suka dan jatuh hati saat bermain di dalamnya. berikut ini sudah ada keunggulan yang akan kamu temukan di dalam situs judi sabung ayam resmi untuk para player di indonesia:

  • Fitur Live Streaming

Untuk keunggulan yang akan kamu dapatkan pertama kali adalah live streaming. Jadi perlu diketahui, lewat fitur yang satu ini, kamu akan menemukan sebuah perlombaan secara langsung. Fitur live streaming memungkinkan para player untuk merasakan sensasi bermain yang sangat mirip seperti pada bandar darat langsung. Karena itu kebanyakan player akan lebih memilih bermain game sabung ayam bersama agen judi yang menyediakan ftur live streaming di dalamnya supaya taruhan lebih menyenangkan.

Para player yang ingin bermain dapat masuk ke dalam pertandingan lewat stus atau aplikasi. Jadi cobalah untuk temukan agen-agen yang memiliki fitur ini di dalamnya. karena ketika kamu ada di dalam sebuah agen judi sabung ayam dengan fitur seperti ini, itu artinya kamu sudah berhasil dapatkan agen terbaik. disini kamu bisa melakukan taruhan dengan aman dan nyaman serta mendapatkan hasil yang begitu menggiurkan.

  • Hadir untuk semua kalangan

Kemudian, kamu juga akan menemukan banyak sekali player yang ikut bermain di dalam agen judi seperti ini. karena itu, game ini hadir untuk semua kalangan player yang membuatnya semakin populer. Game ini bisa diakses dengan mudah oleh player karena alat main yang digunakan hanyalah sebuah smartphone yang dihubungkan ke jaringan internet saja.

Jadi apabila kamu sudah menemukan jaringan internet di dalam smartphone milik kamu, kamu bisa akses sabung ayam online kapan saja dan dimana saja. kamu juga dapat menikmati permainan ini dengan penawaran tanpa batas yang membuat game ini sangat sayang bila dilewatkan begitu saja. jadi cobalah untuk melakukan pemilihan situs sabung ayam sampai menemukan agen seperti ini.

  • Terjamin kEamanannya

Dan yang terakhir adalah mendapatkan game sabung ayam yang sudah terjamin keamanannya. Ini adalah salah satu keunggulan yang juga akan kamu dapatkan dari situs judi sabung ayam. Jadi apabila saat ini kamu mengikuti taruhan sabung ayam secara online, keamanan yang ada di dalam agen patut untuk kamu perhatikan dengan benar.

Pasalnya ketika kamu berada di dalam sebuah agen yang keamanannya tidak begitu terjamin, tentu saja kamu harus memperhatikan sistemnya dulu di dalam agen. Karena semua player yang bermain berhak mendapatkan keamanan pada saat berada di dalam agen. Keamanan dan kenyamanan adalah dua hal penting yang akan membantu player untuk bisa dapatkan keuntungan di setiap harinya. player yang bermain game taruhan online juga tidak perlu khawatir jika nanti tidak bisa mendapatkan keseruan pada game yang dimainkan.

Itulah beberapa keunggulan yang akan kamu dapatkan saat berada di dalam agen judi sabung ayam online resmi dan terpercaya. jadi apabila saat ini kamu tertarik dengan game ini, kamu harus temukan situs-situs dengan semua daftar keunggulan di atas untuk dapatkan keuntungan di setiap harinya.

Originally posted 2022-07-12 00:42:47. …

Strategi Main Sabung Ayam Online Yang Jarang Diketahui Oleh Player

Microsoft Kitchen - Mon, 09/18/2023 - 16:48

Bermain game judi Joker123 apk online adalah salah satu aktivitas yang saat ini sedang banyak dilakukan oleh player. aktivitas ini disukai oleh player karena bisa mendatangkan penghasilan dalam jumlah yang besar. karena itu, apabila saat ini kamu suka dengan taruhan sabung ayam, pastikan kamu bertaruh dengan strategi. Jika kamu punya strategi untuk bermain game sabung ayam, kesempatan kamu dalam mendapatkan kemenangan akan jauh lebih besar. kamu juga bisa menikmati hasil yang menggiurkan lewat kemenangan yang sudah berhasil diraih.

Berikut Ini Beberapa Strategi Main Sabung Ayam Online Yang Jarang Diketahui Oleh Player

Banyak petaruh mendambakan kemenangan dalam game sabung ayam yang dimainkan. Karena itu, jika kamu salah satunya, maka strategi dalam permainan harus kamu ketahui sejak awal. Jika kamu tahu strategi apa saja yang mesti dilakukan pada saat betting, hal ini akan membantu kamu dalam mendapatkan penghasilan yang besar. nah berikut ini sudah kami rangkum beberapa strategi untuk yang ingin bermain game sabung ayam dengan sistem online:

  • Memilih Pertandingan yang Tepat

Dikarenakan ada banyak pertandingan sabung ayam yang akan ditemukan di agen judi terpercaya, maka kamu perlu mencari pertandingan yang memang sudah diketahui dengan baik. Banyanya pertandingan sabung ayam membantu para petaruh untuk memilih yang benar-benar memguntungkan. Jangan pernah berpikir jika semua pertandingan bisa kamu nikmati. jadi sebaiknya cari informasi yang banyak dan lengkap terkait pertandingan yang akan diikuti nanti. Jika sudah mengetahui pertandinganya, barulah kamu bisa dapatkan kemenangan dalam game dengan mudah.

  • Amati Hasil Riwayat Pertandingan Terdahulu

Kemudian, strategi kedua untuk player yang ingin bermain game judi sabung ayam adalah mengamati hasil riwayat pertandingan dari kedua ayam yang diadu. Nantinya, kamu akan bertemu dengan ayam berwarna merah dan biru. Disini kamu harus pandai dalam memilih ayam yang dirasa bisa memenangkan pertarungan. Tapi untuk melakukan analisa, dibutuhkan informasi yang lengkap. Kamu bisa perhatikan hasil riwayat dari kedua ayam yang akan diadu.

Biasanya di agen judi sabung ayam online, player bisa menemukan hasil riwayat tersebut dengan mudah. informasi seperti ini tentu saja dibutuhkan oleh player. apalagi yang baru saja masuk ke dalam dunia taruhan adu ayam online itu sendiri. jadi bagi para pecinta ayam aduan, lakukan strategi yang kedua ini dan kamu bisa dapatkan kemenangan dengan mudah.

  • Modal Harus Dikelola dengan Baik

Strategi main game sabung ayam yang ketiga adalah modal harus dikelola dengan baik. Jadi buat yang ingin bermain taruhan sabung ayam, kamu harus pastikan jika modal yang akan dikeluarkan sudah melalui perhitungan yang matang. Jangan pernah berpikir jika uang yang kamu punya saat ini bisa kamu jadikan chip. Kamu harus perhatikan dulu berapa jumlah chip yang dibuthkan supaya nanti memudahkan proses deposit yang akan kamu lakukan.

Kebanyakan petaruh pemula langsung bertaruh dengan modal yang banyak.padahal jika hal ini dilakukan akan membuat taruhan yang dilakukan player justru tidak bisa memberikan keuntungan ataupun penghasilan. Maka dari itu, kamu tetap harus membatasi penggunaan modal yang akan dikeluarkan di setiap harinya. karena ini adalah bagian dari strategi yang perlu dilakukan oleh player yang bertaruh. Jika sudah mengaturnya, kerugian besar pasti tidak akan pernah kamu rasakan.

  • Bermain dI Situs Terbaik

Dan yang terakhir adalah bermain game sabung ayam di situs judi terbaik. ini merupakan strtegi bermain game judi sabung ayam ketiga yang mesti dilakukan player. jadi untuk yang ingin bermain game sabung ayam, coba pilih dan pilah situsnya dulu. Jika kamu sudah menemukan situs judi terbaik, kamu pasti akan mendapatkan tempat yang bisa berikan kenyamanan untuk playernya.

Itulah beberapa strategi main game judi sabung ayam online yang jarang diketahui oleh player. jadi untuk petaruh yang ingin bermain harus mengikuti strategi di atas untuk bisa dapatkan peluang menang yang besar. jika kamu bisa dapatkan kemenangan dalam permainan sabung ayam, silahkan tarik dananya untuk dapatkan untung menjanjikan. Selamat mencoba dan semoga bermanfaat.

Originally posted 2022-06-08 00:34:09. …

Apa Yang Harus Dilakukan Saat Main Poker Online Modal Kecil?

Microsoft Kitchen - Sat, 09/16/2023 - 16:25

Memang sekarang ini banyak sekali game judi joker123 online yang beredar di internet atau dunia maya dengan begitu bebasnya. Meski game judi dimainkan via onine, tetap saja harus ada modal untuk bisa mengakses dan menikmati keseruan pada game tersebut. begitu pun dengan game judi poker online, semua yang bermain game poker pastinya harus mempelajari dan memahami bagaimana caranya agar modal yang dibawa bisa memberikan hasil yang luar biasa. Karena itu, coba simak beberapa cara di bawah ini untuk pemula yang ingin bermain game poker tapi membawa modal dalamjumlah sedikit.

Hal-Hal Yang Perlu Dilakukan Saat Main Poker Online Memakai Modal Kecil

Permainan poker tidak dapat dipungkiri adalah game judi online yang membutuhkan modal bermain di dalamnya. Modal yang diperlukan pada saat bermain game poker adalah uang asli. Karena itu, ketika kamu berhasil dapatkan kemenangan, maka kemenangan tersebut akan membantu kamu untuk dapatkan penghasilan dalam jumlah yang sangat besar. jadi sudah tidak perlu heran lagi mengapa saat ini banyak petaruh yang bermain game poker dengan modal kecil. Jika kamubisa melakukan taruhan dengan modal kecil, kamu pasti akan bertaruh dengan aman. berikut ada beberapa hal yang sebaiknya dilakukan saat main poker dengan modal kecil:

  • MEnguasai Permainannya Dulu

Hal pertama yang mesti dilakukan oleh player pada saat bermain game poker memakai modal kecil adalah menguasai permainannya terlebih dahulu. Jadi disini kamu harus tahu jika penguasaan terhadap permainan judi poker sangat diperlukan oleh player. karena ketika kamu menguasai permainannya dengan baik, akan ada banyak hal positif yang bisa kamu dapatkan nanti.

Jika kamu termasuk salah seorang pemain baru atau pemula, mungkin kamu perlu waktu yang cukup banyak agar bisa mempelajari dan memahami aturan dalam game poker dengan baik. Jika kamu sudah melakukannya, barulah kamu boleh melakukan taruhan dengan uang asli dengan pemahaman yang kamu miliki. Karena kamu pasti bisa mengolah kartu yang didapatkan dengan benar jika penguasaan terhadap permainan sudah kamu dapatkan.

  • Memakai Konsentrasi Tingkat Tinggi

Kemudian, kamu juga perlu memakai konsentrasi tingkat tinggi pada saat bermain game poker. Ini adalah hal kedua yang perlu dilakukan oleh player. jangan pernah berpikir jika segala kondsii bisa kamu pakai untuk bermain game judi poker online. pasalnya kamu hanya bisa memenangkan permainan poker jika berada dalam konsentrasi. Kamu harus berkonsentrasi penuh pada taruhan dan fokus dengan segala tahapan yang kamu lalui untuk dapatkan kemenangan dengan mudah.

Kebanyakan player di Indonesia yang bermain tanpa konsentrasi justru akan mengalami kerugian dalam jumlah yang sangat besar. karena itu, kamu harus pastikan jika waktu dan tempat yang dipergunakan untuk bermain sudah tepat. pasalnya hanya dengan cara itu sja, kamu pasti bisa dapatkan taruhan yang lebih gampang untuk dimenangkan.

  • Memanfaatkan Trik Jitu

Trik dibutuhkan oleh player pada saat bermain game judi poker. Salah satu trik yang tidakboleh sampai kamu lewatkan adalah trik bluffing atau menggertak. Karena disini kamu harus tahu jika trik bluffing akan sangat membantu kamu untuk mengalahkan player laiin yang duduk di meja taruhan online. jadi trik ini harus kamu lakukan dengan penuh keberanian agar player lain percaya dan segera keluar.

Jika kamu memakai trik yang satu ini, pastikan kamu melakukannya di moment yang tepat. Tidak masalah meski saat ini kartu yang kamu miliki tidak begitu bagus. Jika kamu punya kartu yang tidak terlalu baik nilainya, kamu hanya perlu mengolahnya saja dan berani untuk bluffing. Karena tidak ada satupun player yang bisa mengetahui nilai kombinasi kartu yang kamu dapatkan saat ini. jadi coba untuk melakukan trik yang ketiga ini agar bisa memenangkan permainan denga mudah.

Itulah beberapa hal yang harus dilakukan oleh player bila bermain game judi poker online memakai modal dalamjumlah yang kecil. Jadi apabila saat ini kamu sedang tertarik untuk bermain taruhan poker, kamu boleh melakukan taruhan dengan sejumlah trik di atas. Selamat mencoba dan semoga bermanfaat. 

Originally posted 2022-05-23 00:16:33. …

Begini Cara Mengikuti Taruhan Sabung Ayam Online Yang Aman

Microsoft Kitchen - Thu, 09/14/2023 - 16:09

Beberapa cara sepertinya perlu kamu lakukan apabila ingin bermain game judi idnplay download online dengan aman dan nyaman. karena itu, apabila saat ini kamu mengikuti game sabung ayam, pastikan kamu melakukan taruhan dengan cara yang benar. Game ini sudah bisa diakses dan dinikmati dengan cara online. karena itu terdapat kemudahan pada saat mengakses permainannya. Kemudahan dalam mengakses game taruhan sabung ayam tentu saja dikarenakan akses ke dalam game yang hanya membutuhkan smartphone dan internet saja. jadi kamu bisa bermain dimanapun kamu mau dengan mudah.

Beberapa Cara Mengikuti Taruhan Sabung Ayam Online Dengan Aman

Berbeda halnya dengan game sabung ayam yang dimainkan secara langsung, permainan sabung ayam yang kini diakses via online tentu saja jauh lebih aman. karena kamu bisa akses game ini dimana saja yang kamu mau. Hanya dengan smrtphone dan internet saja, akses ke dalam game sudah bisa dilakukan dimanapun kamu mau. Karena itu, rata-rata player lebih suka bermain game sabung ayam dengan sistem online. jadi apabila kamu tetarik, coba simak cara mengikuti taruhan sabung ayam berikut ini agar prosesnya dapat berjalan dengan aman dan nyaman:

  • Mendaftar di Situs Judi Resmi

Pertama, kamu harus melakukan pendaftaran di situs judi yang resmi. Ini menjadi cara pertama yang harus kamu lakukan apabila ingin mengikuti taruhan sabung aym secara online. pendaftaran yang dilakukan di dalam agen judi resmi akan membantu kamu supaya bisa dapatkan akun member dengan segera. Data-data yang diberikan ke dalam agen harus data asli. Jangan pernah berpikir jika kamu bisa pergunakan data orang lain pada saat mendaftar di dalam agen sabung ayam.

Siapkan semua data diri yang akan diperlukan pada saat mendaftar. Karena itu, apabila saat ini kamu tertarik untuk bermain nanti, tidak ada salahnya untuk melakukan persiapan yang matang. Pasalnya jika kamu mempersiapkan semuanya dengan matang, hal ini akan membantu kamu supaya bisa menyelesaikan proses daftar dengan mudah. kamu juga bisa mendapatkan akun member tanpa harus dalam waktu yang lama.

  • Melakukan Deposit yang Pertama

Kemudian, kamu harus melakukan yang namanya deposit untuk pertama kalinya. Deposit ke dalam stus judi sabung ayam online adalah langkah kedua yang mesti dilakukan oleh player. jadi untuk yang saat ini melakukan transaksi deposit ke dalam agen judi sabung ayam, maka kamu perlu meminta terlebih dahulu nomor rekening agen  lewat cs yang bertugas. Tenang saja, cs akan membantu kamu supaya bisa mendapatkan nomor rekening terbaru milik situs sehingga tidak ada lagi kesalahan yang dilakukan player saat bertaruh.

Deposit ke dalam agen judi sabung ayam sudah semestinya dilakukan di waktu yang tepat. jadi untuk player yang ingin bermain game sabung ayam, jangan pernah bertransaksi jika kamu sendiri tidak tahu apakah bank dalam keadaan online atau tidak. Jadi saat deposit, kamu harus melakukannya ketika bank dalam keadaan online. Dengan begitu, transaksi akan berjalan dengan lancar dan kamu bisa mendapatkan chip untuk bermain taruhan di setiap harinya.

  • Memulai Taruhan dengan Bet Kecil

Dan cara terakhir untuk yang ingin mengikuti taruhan sabung ayam adalah memulai taruhan dengan bet kecil. Jadi untuk yang saat ini ingin bermain game sabung ayam, kamu perlu memasang taruhan dengan bet kecil terlebih dahulu. Jangan buru-buru melakukan pemasngan taruhan dengan bet besar. karena kamu akan mengalami kerugian yang besar jika langsung mengikuti taruhan dengan bet besar.

Bermain game sabung ayam dapat dilakukan dengan bet besar dan juga bet kecil. Jika kamu bermain game sabung ayam dengan bet kecil, kemungkinan untuk kamu bisa mendapatkan kemenangan akan jauh lebih besar. berbeda dengan taruhan yang dilakukan dengan bet besar dimana kebanyakan petaruh akan lebih terfokus hanya pada kemenangan dan sisa uang yang dimiliki saja. sehingga mereka lupa dengan kekalahan dan kerugian yang kerap diberikan game ini untuk playernya.

Itulah beberapa cara mengikuti taruhan sabung ayam online yang aman untuk pemula. Jadi supaya kamu bisa bertaruh nanti, coba ikuti satu per satu semua cara main di atas untuk dapatkan untung yang besar.

Originally posted 2022-05-07 00:40:10. …

Simak Tipsnya Jika Ingin bermain di Agen Judi Poker Online

Microsoft Kitchen - Tue, 09/12/2023 - 15:34

Dalam bermain game judi poker88 online, tentu kamu harus mengetahui terlebih dahulu sejumlah tips yang akan membantu kamu agar bisa menjalankan taruhan dengan baik. Tips bermain game judi poker sejatinya diperlukan oleh semua player terutama yang masih pemula. Karena ketika tips bermain game poker sudah diketahui oleh player, tentu hal ini akan membantu mempermudah proses taruhan yang akan dilakukan. maka dari itu, coba disimak dulu beberapa tips bermain game judi poker di bawah ini apabila ingin melakukan taruhan dengan mudah dan nyaman.

Beragam Tips Yang Diperlukan Jika Ingin Bermain Game Di Agen Poker Online

Pada saat bermain game judi poker, semua player tentu saja berharap jika mereka bisa mendapatkan hasil keuntungan dalam jumlah besar. tapi sayangnya, sebagai pemula, banyak hal yang sejatinya perlu kamu ketahui terlebih dahulu. Jika kamu tahu banyak hal tentang game yang dimainkan, tentu saja kemungkinan untuk kamu bisa dapatkan kemenangan akan semakin besar. karena itu, coba simak tips bermain game judi poker berikut ini agar kesempatan meraup untung besar akan semakin terbuka lebar:

  • Membaca Info Tentang Aturan Main Poker

Pertama, coba baca informasi tentang aturan main game poker yang benar. Jadi untuk yang saat ini suka dengan game judi poker, kamu harus pastika jika informasi di dalam permainan poker sudah kamu dapatkan sejak awal. Banyak hal yang mesti diketahui oleh player salah satunya adalah kombinasi dalam game poker itu sendiri. jadi disini kamu harus mengetahui informasi tentang kombinasi yang ada di dalam game poker supaya bisa dapatkan susunan terbaik pada saat bermain taruhan.

Aturan main game poker lainnya yang perlu diketahui oleh player adalah stategi main yang akan dibutuhkan atau berguna pada saat bermain. jadi kamu harus tahu jika strategi dalam game poker juga dibutuhkan. Salah satu strategi yang sangat populer di dalam dunia betting adalah strategi bluffing. Jadi kamu bisa melakukan bluffing untuk menggertak player lain agar mau keluar dari taruhan yang dimainkan.

  • Modal Tampil

Kemudian. Pada saat bermain game judi poker, kamu juga harus punya yang namanya modal tampil. Player yang ingin bermain game poker sudah sepatutnya melakukan deposit terlebih dahulu. Apabila sudah melakukan deposit, barulah uang yang dibawa ke dalam permainan disetorkan ke dalam rekening agen. Dengan uang tersebut, kamu bisa bermain taruhan poker di setiap harinya. kamu bisa mengikuti permainan poker tanpa harus menunggu waktu-waktu tertentu.

Dalam game poker, chip memang begitu dibutuhkan oleh semua player yang bertaruh. Maka dari itu, apabila saat ini kamu tengah tertarik untuk bermain judi poker online, jangan pernah beranggapan jika game poker ini bisa kamu akses atau mainkan tanpa chip atau modal di dalamnya. tanpa adanya modal, game apapun tidak akan bisa diakses termasuk game judi poker itu sendiri.

  • Bermain Sabar

Dan yang ketiga adalah bermain game taruhan poker dengan penuh kesabaran. Ini menjadi tips selanjutnya yang tidak boleh dilupakan oleh player di Indonesia. Karena ketika kamu berharap untuk terjun ke dalam game taruhan poker, tentu saja kesabaran menjadi salah satu hal yang sangat dibuthkan disini. Kamu bisa dapatkan banyak kemenangan dan keuntungan bila lebih bersabar dalam menjalankan taruhan online.

Sudah banyak petaruh di Indonesia yang saat ini melakukan taruhan dengan sikap terburu-buru. Bukan hanya memberikan efek kerugian dalam jumlah yang besar saja, jika kamu buru-buru mengikuti kegiatan betting yang ada khawatirnya nanti kerugian dalam jumlah besar juga akan kamu alami nanti. Kesabaran adalah salah satu teknik bermain yang sangat penting untuk dilakukan oleh para player indonesia.

Itulah beberapa tips yang harus dilakukan oleh player apabila ingin bermain bersama agen judi poker online yang terbaik. jadi apabila saat ini kamu mengikuti semua tips bermain di atas, kemugkinan untuk kamu bisa dapatkan keuntungan akan semakin besar. bahkan kamu juga bisa menikmati kesuksesan lewat game ini di setiap harinya. selamat mencoba.

Originally posted 2022-04-10 00:30:54. …

Trik Membuat Akun Judi Poker Online Yang Harus Dipelajari Pemula

Microsoft Kitchen - Sun, 09/10/2023 - 15:13

Pembuatan akun member di dalam agen judi idnplay poker online adalah salah satu informasi yang pastinya akan dibutuhkan oleh semua player pemula di indonesia. karena player pemula yang bermain game judi poker akan membutuhkan trik-trik supaya proses pembuatan akun member dapat berjalan mudah dan nyaman. trik membuat akun judi poker sudah sepatutnya dipelajari oleh pemula. Jadi jika kamu salah satu pemula yang saat ini tertarik dengan game poker, coba simak dulu beberapa trik membuat akun judi di bawah ini yang harus dipelajari oleh pemula.

Beragam Trik Untuk Player Yang Ingin Membuat Akun Judi Poker Online

Semua yang sudah terjun ke dalam dunia taruhan pasti ingin mencoba game judi poker yang kini bisa diakses dengan sistem online. terdapat begitu banyak perbedaan yang dimiliki game poker offline dan online. karena itu, jika kamu belum pernah mencoba game ini dengan sistem online, tentu kamu perlu menyimak dulu uraian kali ini. pasalnya banyak sekali hal penting yang sepatutnya diketahui termasuk salah satunya adalah panduan membuat akun judi poker. Berikut ini diantaranya trik membuat akun judi poker yang perlu dipelajari oleh pemula:

  • Main di Situs yang Direkomendasikan Orang-orang

Pertama, kamu harus mainkan game judi poker di situs yang sudah direkomendasikan banyak orang. Ini adalah cara main pertama yang perlu dilakukan oleh player. jika kamu bermain game judi poker, kamu tidak boleh salah dalam memilih situs judi. Situs yang dipilih harus situs yang terpercaya. adapun langkah memilih situs poker adalah melihat lisensi resmi dalam situs judi itu sendiri. jadi kamu harus mencari situs judi poker yang sudah mendapatkan sertifikat sebagai situs resmi terlebih dahulu.

Kemudian, kamu juga perlu melakukan taruhan di dalam situs yang sudah memiliki fasilitas dan layanan terlengkap di dalamnya. jadi untuk yang saat ini ingin bermain game judi poker, kamu harus perhatikan dulu apakah situs yang dipilih adlah situs yang sudah dilengkapi dengan pelayanan yang nyaman atau tidak. Karena situs judi terbaik pasti akan memberikan pelayanan terbaik untuk para player yang bermain.

  • Siapkan Dana

Kemudian, kamu perlu menyiapkan dana untuk bisa deposit ke dalam situs judi poker online. Bagi yang ingin bermain game poker, kamu perlu memiliki dana dan rekening atas nama kamu sendri. Jika kamu belum membuat rekening bank, silahkan buat dengan memakai nama kamu sendiri. karena pihak agen tidak akan memproses transaksi yang nama akun banknya berbeda dengan nama pemilik akun judi yang dibuat.

  • Mengisi Form Data

Langkah ketiga untuk player yang ingin membuat akun judi poker adalah mengisi form data. Jadi apabila kamu sudah menemukan situs judi dan menyiapkan dana yang cukup, ini adalah langkah ketiga yang perlu dilakukan. silahkan isi data-data yang benar. Adapun data yang sebaiknya diisi dengan data kamu sendiri adalah nama akun atau username, nomor rekening bank yang digunakan, jenis bank yang digunakan dan banyak lagi yang lain.

Jika kamu ingin mendapatkan kemudahan dalam melakukan pengisian data diri, usahakan untuk mempersiapkan data-data yang diperlukan. Persiapan data diri sebelum proses pendaftaran dilakukan adalah salah satu langkah yang mesti dilakukan oleh player. karena itu, kamu bisa isi form data dengan cara atau trik satu ini.

  • Memulai Taruhan

Dan langkah terakhir yang perlu dilakukan adalah memulai taruhan. ini adalah salah satu langkah membuat akun judi yang terakhir kali mesti dilakukan oleh player. jika kamu sudah memulai taruhan online, itu artinya kamu bisa melakukan taruhan kapan saja. tapi disini kamu harus periksa dulu apakah taruhan yang kamu lakukan sudah kamu mengerti dengan baik atau tidak. Jika tidak, usahakan untuk mempelajari terlebih dahulu aturan main di dalamnya.

Itulah beberapa trik membuat akun judi poker online yang sudah sepatutnya dipelajari dan dipahami oleh semua pemula di Indonesia. jika kamu sudah mempelajarinya, kamu pasti bisa membuat akun member dengan segera. Bahkan waktu yang dibutuhkan nanti hanya beberapa menit saja jika semua langkah sudah benar atau sesuai.

Originally posted 2022-03-25 00:07:14. …

Ini Yang Membuat Permainan Sabung Ayam Online Lebih Digilai Player

Microsoft Kitchen - Fri, 09/08/2023 - 15:05

Apabila kamu saat ini begitu tertarik untuk bermain game judi PKVGames online, tentu kamu harus tahu alasan mengapa game ni begitu digilai player di Indonesia. diantara banyaknya games di indonesia saat ini, para player akan lebih suka dengan game sabung ayam. Tentu bukan tanpa alasn mengapa banyak peminat judi online di indonesia suka dengan game ini. Jadi perlu kamu ketahui, game sabung aym adalah game taruhan online yang sangat menarik dan menyenangkan. Jika kamu bermain game sabung ayam, itu artinya kamu tidak perlu repot pergi keluar rumah untuk bisa akses game ini. cukup smartphone dan internet saja, game ini bisa kamu akses dengan mudah.

Berikut Ini Beberapa Alasan Yang Membuat Game Sabung Ayam Online Digilai Oleh Player

Game sabung ayam yang dimainkan secara online bisa kamu akses dan nikmati dengan memakai smartphone dan internet. Jika dulu game ini bisa diakses dengan cara pergi ke sebuah tempat khusus dulu, berbeda dengan sekarang. Kamu sudah bisa mengikuti permainan dengan hanya menggunakan sebuah smartphone. Bahkan akses ke dalam game pun bisa dilakukan dimana saja yang diinginkan. Apabila kamu gemar memainkan game secara online, berikut ini ada beberapa hal menarik yang akan kamu temukan nanti:

  • Lebih Murah

Jika dibandingkan dengan permainan judi sabung ayam via offline, game sabung ayam yang dimainkan secara online akan jauh lebih murah. Inilah yang membuat para petaruh sangat suka dengan game judi yang dimainkan secara online. pasalnya untuk mengakses game ini, para player hanya perlu ponsel pintar, internet dan modal puluhan ribu rupiah untuk bisa mengakses game ini. jadi tidak perlu repot melakukan taruhan dengan modal besar karena modal sedikit sudah bisa membantu kamu untuk dapatkan keuntungan yang menjanjikan.

Meski taruhan sabung ayam diakses dengan memakai sistem online, tetap saja para player harus punya modal untuk bertaruh. Karena itu, dengan modal bermain inilah, kamu pasti akan dapatkan taruhan yang lebih menguntungkan. Bukan Cuma itu saja, kamu juga akan dapatkan taruhan yang sangat menyenangkan karena fasilitas betting yang tersedia di dalam agen sabung ayam itu sendiri.

  • Banyak Pilihannya

Kemudian, kamu juga akan menemukan lebih banyak pilihan pada saat game sabung ayam dimainkan secara online. pilihan game sabung ayam yang diakses secara online jauh lebih banyak. tak heran jika para player yang bermain game nanti akan menemukan kemudahan dalam memilih jenis yang akan dimainkan. Di dalam agen sabung ayam terpercaya, para player dapat memilih turnamen mana yang akan diikuti pad saat betting nanti.

Maka dari itu, untuk yang saat ini gemar bermain game sabung ayam, jangan pernah melupakan keunggulan yang kedua ini. kamu bisa memanfaatkan beragam pilihan yang ada di dalam agen sabung ayam online terprcaya untuk dapatkan kemenangan dengan mudah. kamu juga bisa dapatkan kesenangan lewat permainan yang kamu ikuti nanti.

  • Banyak Bonusnya

Dan yang ketiga adalah menemukan banyak bonus yang untungnya sangat menggiurkan. Jadi untuk para player yang ingin bermain judi sabung ayam, bonus di dalam permainan bisa kamu nikmati di setiap harinya. tapi disini kamu harus tahu jika bonus di dalam agen sabung ayam sangatlah beragam. Kamu akan menemukan bonus mulai dari bonus untuk pendatang baru, bonus bagi yang melakukan deposit d setiap harinya, bonus rollingan dan banyak lagi.

Karena itu, jika kamu ingin bermain game sabung ayam, kamu tidak boleh lupa jika di dalam agen judi sabung ayam terdapat bonus yang akan meningkatkan penghasilan kamu dalam bertaruh. Jika kamu sudah mendapatkan banyak bonus, keuntungan besaar pasti akan segera didapatkan.

Itulah beberapa hal yang membuat permainan judi sabung ayam online lebih digilai player. karena itu, jika kamu sudah melakukan taruhan sabung ayam di dalam agen judi yang terbaik, taruhan akan berjalan dengan mudah. prosesnya sangat menyenangkan sehingga semua petaruh pasti akan betah dan nyaman meski bertaruh dalam waktu lama. Selamat mencoba.

Originally posted 2022-03-03 00:36:34. …

Apa Saja Trik Poker Online Yang Dibutuhkan Supaya Bisa Menang?

Microsoft Kitchen - Wed, 09/06/2023 - 14:00

Pada saat bermain game judi login pragmatic play online, para player diwajibkan untuk mengetahui dulu apa saja trik-trik bermain yang akan membantu mereka supaya bisa dapatkan kemenangan dengan mudah. trik bermain game poker tidak hanya dibtuuhkan oleh yang masih pemula saja tapi yang pro dan handal sekalipun akan memerlukan trik supaya bisa dapatkan kemenangan dalam taruhan poker online. ketika kamu bermain dengan sejumlah trik, tentu saja kemenangan pasti akan jauh lebih gampang untuk didapatkan. Karena itu, trik bermain game poker sejatinya begitu dibutuhkan oleh semua player terutama yang masih pemula. Jika kamu salah satunya, coba simak terus pembahasannya.

Trik-Trik Yang Sangat Dibutuhkan Saat Main Game Poker Online

Banyak petaruh di Indonesia yang saat ini dibuat kebingungan lantaran tidak memahami trik bermain game poker dengan baik. Padahal ketika kamu terjun ke dalam taruhan poker yang dinikmati via online,tentu saja hal ini akan membantunya agar bisa dapatkan kemenangan lebih gampang. Sudah menjadi rahasia umum jika player yang bermain game poker ingin dapatkan kemenangan sekaligus terhindar dari kata kekalahan. Karena itu, coba simak beberapa trik berikut ini agar kamu bisa dapatkan kemenangan pada permainan judi poker:

  • Pertimbangkan Banyak Hal Terlebih Dahulu

Di dalam permainan judi poker, para player dituntut untuk membuat pertimbangan-pertimbangan terlebih dahulu. Banyak hal yang sejatinya harus dipertimbangkan oleh player terutama setelah melihat kartu yang ada di tangan dan di atas meja. Player yang ingin bermain game poker bisa mengikuti permainan ini dengan sangat mudah dengan cara menghafal semua kombinasi dalam permainan ini. jika sudah bisa menghafal kombinasi dalam permainan poker, hal ini akan membantu player untuk dapatkan kemenangan lebih mudah.

Banyak hal yang tidak boleh dilupakan pad saat memasang taruhan pada permainan poker. Para player yang bermain game poker harus mempertimbangkan jumlah uang yang dikeluarkan. Player yang sudah berada di meja taruhan pun harus tahu dan pandai dalam membuat keputusan apakah akan lanjut atau tidak.

  • Cerdas dalam Melakukan Bluffing

Kedua, cobalah untuk cerdas dalam melakukan bluffing. Ini menjadi trik kedua yang bisa dipelajari oleh pemula dan player pro di Indonesia. bluffing sendiri mejadi salah satu teknik yang dikenal oleh para player poker online. pasalnya dari sekian banyak strategi yang ada, sepetrinya kebanyakan player lebih memilih strategi satu ini untuk dapat mengalahkan lawan dalam bermain taruhan poker. Lawan main game poker biasanya akan keluar dari room setelah mendapatkan gertakan seperti ini.

Hanya saja, pada saat membuat gertakan kepada player lawan, pastikan kamu punya kartu yang memang memiliki potensi menang lebih besar. tapi jika tidak, sebaiknya cari moment terbaik untuk kamu bisa melakukan strategi yang satu ini. karena jika kamu tidak punya kartu dengan nilai yang baik tetapi berani melakukan gertakan seperti ini, khawatirnya nanti taruhan yang kamu lakukan justru hanya memberikan kegagalan.

  • Bermain dengan Tenang

Dan yang terakhir adalah mainkan game ini dengan penuh ketenangan. Ini juga menjadi salah satu hal yang begitu dibutuhkan oleh semua player yang tengah bermain game poker. Jadi ketenangan dalam bermain game poker dibutuhkan oleh semua petaruh yang ada di indonesia. jadi apabila kamu melakukan taruhan pkoer dengan sistem online, ketenangan dalam bertaruh adalah salah satu hal yang penting untuk dimiliki semua player.

Jika kamu bisa bersikap tenang dan santai pada taruhan yang dijalankan, sudah pasti hasilnya nanti akan jauh lebih baik. Kamu bisa mendapatkan hasil yang sangat maksimal dari taruhan yang dijalankan. Sebab semua petaruh akan mendapatkan kesempatan terbaik mereka dalam meraih kombinasi terbaik jika bermain dengan penuh ketenangan seperti ini.

Demikian informasi mengenai trik poker online yang dibutuhkan oleh player agar bisa dapatkan banyak kemenangan. Jika kamu bisa mengikuti semua trik dalam permainan poker di atas, tentu hal ini akan membantu kamu untuk bisa dapatkan peluang menang dan untung yang jauh lebih menjanjikan. Selamat mencoba dan semoga bermanfaat.

Originally posted 2022-01-09 00:21:19. …

Trik Jitu Untuk Dapatkan Kemenangan Dalam Game Poker Online

Microsoft Kitchen - Mon, 09/04/2023 - 12:37

Permainan judi s128 apk adalah salah satu game yang diminat oleh kalangan penjudi di Indonesia. peminat game ini datang dari semua kalangan. Jadi tak heran jika kebanyakan petaruh di Indonesia lebih suka dengan game ini dibanding permainan judi online yang lain. apabila kamu tertarik untuk bermain game poker dengan cara online, pastikan kamu sudah paham dengan panduan dasar di dalamnya terlebih dahulu. Pemahaman tersebut akan sangat berguna supaya kamu bisa dapatkan keuntungan besar dengan cara yang mudah.

Beragam Trik Agar Dapatkan Kemenangan Dalam Game Judi Poker Online

Cara menentukan pemenang dalam game ini adalah player yang bisa bertahan sampai akhir. Jadi apabila kamu bermain game judi poker, pastikan kamu selalu bertahan hingga di level akhir atau sampai tidak ada satu pun player yang duduk bersama kamu di dalam meja taruhan poker. Maka dari itu, usahakan untuk dapat melakukan taruhan dengan benar sehingga kemenangan bisa segera kamu dapatkan. Nah, bagi yang masih baru atau pemula dan belum pernah mempelajari trik bermain game poker, berikut ini sudah kami rangkum beberapa trik dapatkan kemenangan yang perlu kamu lakukan:

  • Membawa modal yang cukup

Untuk trik bermain game judi poker yang pertama adalah membawa modal yang cukup. Jadi untuk para playeryang ingin bermain game poker, pastikan kamu sudah mengetahui berapa jumlah modal yang akan dibawa ke dalam taruhan. pasalnya modal memegang peranan penting untuk player yang ingin bertaruh. Jika kamu punya modal yang cukup, kemenangan bukanlah hal yang sulit didapat. Bahkan dengan modal yang kamu miliki, kamu juga bisa mainkan game poker berulang kali dengan mudah dan praktis.

Nah, untuk player yang saat ini ingin bermain game poker, kamu harus lakukan yang namanya deposit dulu. Jadi uang yang kamu punya bisa disetorkan ke rekening milik situs. Jika sudah disetorkan, modal yang semula berupa uang asli akan berubah menjadi chip. Dengan chip ini, kamu bisa bermain taruhan kapan saja kamu mau. Bahkan kamu juga bisa mengakses dan menikmati permainan dimana saja dengan mudah dan nyaman.

  • Berpindah Posisi

Kemudian, trik jitu kedua untuk player yang ingin dapatkan kemenangan dalam game judi poker online adalah berpindah posisi. Ini adalah salah satu cara terbaik untuk player yang ingin menang. Jadi buat player yang ingin bermain game poker, kamu boleh berpindah ke kursi yang lain jika kursi yang kamu duduki saat ini masih belum bisa memberikan kamu banyak kemenangan.

Sudah banyak petaruh yang berhasil dapatkan kemenangan ketika mereka mengambil semua peluang yang ada. Jadi apabila saat ini kamu ingin bermain game poker, berpindah posisi menjadi langkah kedua yang tidak boleh sampai kamu lewatkan begitu saja. kamu harus pindah ke posisi atau meja yang lain untuk dapatkan kesempatan menang lebih besar.

  • Tentukan Waktu yang Pas

Dan yang terakhir adalah menentukan waktu yang pas untuk bermain taruhan online. waktu bermain game judi poker sebenarnya bisa kapan saja. mengingat game ini selalu tersedia 24 jam di setiap harinya. jadi kamu bisa menikmati game ini kapan saja baik di pagi hari, siang, bahkan di waktu dini hari sekalipun.

Jika kamu ingin mengejar kemenangan dalam taruhan poker, maka waktu yang pas adalah salah satu solusi yang tepat untuk kamu bisa dapatkan keuntungan. Jadi buat yang ingin bermain game poker, pemilihan waktu disini begitu dibutuhkan oleh player. Jika kamu sudah berhasil menemukan waktu yang tepat, kemungkinan untuk kamu dapatkan kemenangan akan semakin mudah. kamu bisa bermain dengan penuh dan fokus jika waktu yang digunakan saat bettingsudah tepat.

Itulah beberapa trik jitu untuk dapatkan kemenangan dalam game judi poker online. jadi apabila saat ini kamu sudh mengikuti semua trik di atas dengan baik, coba lihat hasil yang didapatkan. Karena petaruh yang bermain dengan trik yang tepat akan mendapatkan hasil keuntungan yang jauh lebih besar. selamat mencoba.

Originally posted 2022-01-08 00:14:24. …

Cara Memilih Permainan Judi Online yang Bisa Kamu Ikuti

Microsoft Kitchen - Sat, 09/02/2023 - 11:40

Hari-hari ini, kita menghabiskan lebih banyak waktu di internet daripada sebelumnya. Salah satu konsekuensi yang tidak diinginkan dari revolusi digital adalah semakin populernya hiburan online. Judi Download Joker123 online adalah salah satu hiburan yang menarik perhatian orang-orang di seluruh dunia. Bermain judi secara onlineatau di perangkat seluler telah menjadi cara paling populer untuk bersantai bagi banyak orang. Judi berbasis online  berada di garis depan tren ini, menawarkan hiburan yang cepat, menyenangkan, dan objektif. Pada artikel ini, kami akan menunjukkan kepada kamu bagaimana memilih permainan atau game pada judi dengan baik.

Cara Pilih Permainan Judi Online

Beragam cara dapat kamu lakukan apabila ingin mendapatkan permainan judi yang terbaik. meski tidk mudah, tapi pemilihan game judi adalah salah satu hal yang mesti dilakukan. berikut ini sudah kami rangkum informasi untuk player yang ingin memilih permainan pada judi secara online. Beberapa diantaranya adalah sebagai berikut.

  • Pilih Yang Bisa Menghasilkan Banyak Uang

Sebelum kamu dapat menemukan permainan yang sempurna untuk diri kamu sendiri, kamu harus terlebih dahulu mengidentifikasi komponen terpenting dari permainan kamu. Tidak mengherankan jika banyak pemain ingin menghasilkan uang sebanyak mungkin, tetapi bagaimana kamu memilih permainan yang tepat untuk itu? Jika kamu mencari keuntungan yang cukup besar untuk berhenti dari pekerjaan harian kamu, kamu disarankan untuk mencari permainan judi online yang populer karena kerap memberikan hasil besar untuk para playernya.

Biasanya game-game seperti ini adalah game yang hanya mengedepankan hoki semata. Tapi meski bisa memberikan hasil yang besar, tetap saja para player yang bertaruh harus pandai dalam melakukan taruhan dengan teknik yang cemerlang. Ini akan membantu kamu untuk bisa dapatkan kemenangan meski game yang dimainkan adalah game yang hanya mengedepankan keberuntungan.

  • Pilih Untuk Mencari Kemenangan Berulang

Beberapa orang memainkan permainan slot termasuk judi dengan harapan memenangkan jackpot besar, sementara yang lain lebih memilih probabilitas tinggi untuk memenangkan jackpot kecil secara teratur. Ada beberapa jenis permainan atau game judui yang dirancang untuk memungkinkan kamu memenangkan hadiah kecil seperti itu secara teratur. Hanya saja, untuk dapat memenangkan game-game yang seperti ini, tetap dibutuhkan teknik dan usaha di dalamnya.

Kamu juga perlu melakukan latihan di setiap harinya supaya semakin mengenal permainan yang akan diikuti nanti. Karena semua petaruh yang ingin mencari kemenangan berulang harus pandai dan jeli dalam memilih permainan. Jika berhasil temukan kemenangan berulang dalam taruhan yang dimainkan, kamu pasti akan meraup hasil besar. meski bermodalkan puluhan ribu, tetap saja untung hingga jutaan rupiah bisa segera kamu nikmati dengan mudah. 

  • Maksimalkan permainan yang sudah dipilih

Bagi yang sudah berhasil menemukan permainan judi terbaik. pastinya kamu harus memaksimalkan keuntungan dalam taruhan yang dimainkan. Apalagi game yang kamu akses dan nikmati saat ini adalah game yang memakai uang asli di dalamnya. karena itu, penggunaan uang asli dalam game taruhan online sudah sepatutnya menjadi motivasi untuk kamu melakukan taruhan dengan giat.

Karena hanya dengn cara ini saja, kamu bisa dapatkan kesempatan besar dalam meraih yang namanya kemenangan. Kamu juga bisa meningkatkan penghasilan kamu dalam bertaruh ketika game-game yang dipilih adalah game yang sudah sesuai dengn basic atau kapasitas kamu sebagai seorang petaruh. 

  • Berhenti Setelah Menang

Jangan lupa, setelah kemenangan besar berhasil didapatkan, hentikan segera taruhannya. Karena ketika kamu menghentikan taruhan yang kamu mainkan, hal ini akan sangat membantu kamu untuk dapatkan hasil dari kemenangan yang sudah diraih. Maka dari itu, sudah sepatutnya untuk kamu menghentikan semua taruhan yang kamu lakukan apabila kemenangan berhasil dicapai. Tapi disini kamu harus tetapkan target menang agar tahu kapan harus berhenti dari taruhan. 

Itulah tadi beberapa cara menentukan permaiann dalam hal bermain judi online. Semoga artikel ini dapat bermanfaat untuk kamu, khususnya yang ingin memulai keberuntungan pada permainan sejenis ini. Ingatlah untuk terus memastikan jika kamu telah tepat dalam mengambil langkah karena jika salah sedikitpun maka kamu akan menemui kerugian.

Originally posted 2022-09-01 00:46:49. …

SharePoint 2016 : Mais ou se trouve le “Open in file explorer” dans les modern libraries ???

The Mit's Blog - Thu, 07/07/2016 - 14:11
Ce qui est toujours plaisant lors de montée de version d’un outil, restera toujours la découverte des nouveautés  et ensuite … le recherche délicate des fonctions d’origine … sans parler des fonctions désormais absentes … A chaque migration, l’outil ...
Categories: Microsoft , Technology

Office 2016 : Au revoir le Document Information Panel (DIP)

The Mit's Blog - Tue, 07/05/2016 - 17:59
Il est vraiment difficile d’arriver à suivre toutes les nouveautés et autres informations diverses et variés sur SharePoint et Office 2016, On peut passer à coté de certaines …pas d’une nouveauté mais plutôt d’une disparition, d’une feature deprecate...
Categories: Microsoft , Technology

Subversive-C: Abusing and Protecting Dynamic Message Dispatch

Microsoft Research Publications - Wed, 06/22/2016 - 09:00
The lower layers in the modern computing infrastructure are written in languages threatened by exploitation of memory management errors. Recently deployed exploit mitigations such as control-flow integrity (CFI) can prevent traditional return-oriented programming (ROP) exploits but are much less effective against newer techniques such as Counterfeit Object-Oriented Programming (COOP) that execute a chain of C++ virtual methods. Since these methods are valid control-flow targets, COOP attacks are hard to distinguish from benign computations. Code randomization is likewise ineffective against COOP. Until now, however, COOP attacks have been limited to vulnerable C++ applications which makes it unclear whether COOP is as general and portable a threat as ROP. This paper demonstrates the first COOP-style exploit for Objective-C, the predominant programming language on Apple’s OS X and iOS platforms. We also retrofit the Objective-C runtime with the first practical and efficient defense against our novel attack. Our defense is able to protect complex, real-world software such as iTunes without recompilation. Our performance experiments show that the overhead of our defense is low in practice.
Categories: Microsoft

Compositional Learning of Embeddings for Relation Paths in Knowledge Bases and Text

Microsoft Research Publications - Sat, 06/11/2016 - 09:00
Modeling relation paths has offered significant gains in embedding models for knowledge base (KB) completion. However, enumerating paths between two entities is very expensive, and existing approaches typically resort to approximation with a sampled subset. This problem is particularly acute when text is jointly modeled with KB relations and used to provide direct evidence for facts mentioned in it. In this paper, we propose the first exact dynamic programming algorithm which enables efficient incorporation of all relation paths of bounded length, while modeling both relation types and intermediate nodes in the compositional path representations. We conduct a theoretical analysis of the efficiency gain from the approach. Experiments on two datasets show that it addresses representational limitations in prior approaches and improves accuracy in KB completion.
Categories: Microsoft

A Gray Box Approach For High-Fidelity, High-Speed Time-Travel Debugging

Microsoft Research Publications - Wed, 06/08/2016 - 09:00
Time-travel debugging (TTD) lets developers step backward as well as forward through a program’s execution. TTD is a powerful mechanism for diagnosing bugs, but previous approaches suffer from poor performance due to checkpoint and logging overhead, or poor fidelity because important information like GUI state is not tracked. In this paper, we describe how to provide highperformance and high-fidelity TTD to programs written in managed languages. Previous high-performance debuggers treat components external to the program like the GUI as black boxes, but that is not sufficient for highfidelity time-travel. Instead, we advocate for a gray-box approach that keeps these components live and in sync with the program during time-travel. The key insight is that managed runtime APIs expose most of the functionality required to do this; where it does not, we extend the runtime with a small number of non-intrusive interrogative interfaces. To demonstrate the power of our gray-box approach, we implement ReJS, a time-traveling debugger for web applications. ReJS imposes imperceptible tracing overhead, and its logs typically grow less than 1 KB/s. As a result, ReJS is performant enough to be deployed in the wild; real client machines can ship buggy execution traces across the wide area to developer-side machines for debugging.
Categories: Microsoft
Syndicate content

eXTReMe Tracker